For many end users and system integrators, SIL is a somewhat ambiguous concept that often is misinterpreted and incorrectly implemented. Learn more.

To fully understand safety-integrity level (SIL) and its implications, it is important to grasp the overarching concept known as functional safety and how it applies to safety-instrumented systems (SIS) within the process industries.

As defined by IEC standard 61508, functional safety is the safety that control systems provide to an overall process or plant. The concept of functional safety was developed in response to the growing need for improved confidence in safety systems. Major accidents around the world, as well as the increasing use of electrical, electronic or programmable electronic systems to carry out safety functions, have raised awareness and the desire to design safety systems in such a way as to prevent dangerous failures or to control them when they arise.

Industry experts began to address functional safety and formalize an approach for reducing risk in the process plant environment through the development of standards IEC 61508, IEC 61511, and ANSI/ISA 84. Previous safety standards were generally prescriptive in nature, not performance based. An emphasis on quantitative risk reduction, lifecycle considerations, and general practices make these standards different from their predecessors. Functional safety is a term used to describe the safety system that is dependent on the correct functioning of the logic solver, sensors and final elements to achieve a desired risk reduction level. Functional safety is achieved when every safety function is successfully carried out and the process risk is reduced to the desired level.

A safety instrumented system is designed to prevent or mitigate hazardous events by taking a process to a safe state when predetermined conditions are violated. Other common terms for SISs are safety-interlock systems, emergency shutdown systems (ESD), and safety-shutdown systems (SSD). Each SIS has one or more safety instrumented functions. To perform its function, a safety-instrumented function loop has a combination of logic solver(s), sensor(s) and final element(s). Every safety instrumented function within a safety-instrumented system will have a safety-integrity level. These SIL levels may be the same, or may differ, depending on the process. It is a common misconception that an entire system must have the same SIL level for each safety function.

Safety Integrity Level

A SIL is a measure of safety system performance in terms of probability of failure on demand (PFD). This convention was chosen based on the numbers: it is easier to express the probability of failure rather than that of proper performance (e.g., 1 in 100,000 vs. 99,999 in 100,000).

There are four discrete integrity levels associated with SIL: SIL 1, SIL 2, SIL 3, and SIL 4. The higher the SIL level, the higher the associated safety level, and the lower probability that a system will fail to perform properly. As the SIL level increases, typically the installation and maintenance costs and complexity of the system also increase. Specifically for the process industries, SIL 4 systems are so complex and costly that they are not economically beneficial to implement. Additionally, if a process includes so much risk that a SIL 4 system is required to bring it to a safe state, then there is a fundamental problem in the process design that needs to be addressed by a process change or other non-instrumented method.

It is a very common misconception that individual products or components have SIL ratings. Rather, products and components are suitable for use within a given SIL environment but are not individually SIL rated. SIL levels apply to safety functions and safety systems (SIFs and SISs). The logic solvers, sensors and final elements are only suitable for use in specific SIL environments, and only the end user can ensure that the safety system is implemented correctly. The equipment or system must be used in the manner in which it was intended in order to successfully obtain the desired risk reduction level. Just buying SIL 2 or SIL 3 suitable components does not ensure a SIL 2 or SIL 3 system.