Researchers at Purdue University have developed a facility aimed at learning precisely how coal and biomass are broken down in reactors, or gasifiers, as part of a project to strengthen the scientific foundations of the synthetic fuel economy.

"A major focus is to be able to produce a significant quantity of synthetic fuel for the U.S. air transportation system and to reduce our dependence on petroleum oil for transportation," says Jay Gore, the Reilly University Chair Professor of Combustion Engineering at Purdue, a West LaFayette-based university.

The research is part of work to develop a system for generating large quantities of synthetic fuel from agricultural wastes, other biomass or coal that would be turned into a gas using steam and then converted into a liquid fuel.

Other aims are to learn how to generate less carbon dioxide than conventional synthetic-fuel processing methods while increasing the yield of liquid fuel by adding hydrogen into the coal-and-biomass-processing reactor, a technique pioneered by Rakesh Agrawal, Purdue's Winthrop E. Stone Distinguished Professor of Chemical Engineering.

Researchers are using the facility to learn how coal and biomass "gasify" when exposed to steam under high pressure in order to improve the efficiency of the gasification process.

"We want to show that our system is flexible for using coal and biomass," Gore says. "The aim is to create a sustainable synthetic fuel economy. What's daunting is the size of the problem - how much oil we need - how much energy we need."

Findings published last year showed carbon dioxide might be reduced by 40 percent using the technique. And new findings will be detailed in a research paper being presented during a January meeting of the American Institute of Aeronautics and Astronautics in Orlando.

The research is based at the university's Maurice J. Zucrow Laboratories.

Links