This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Ensuring safety from fires and explosions in drying operations first requires the proper understanding of the thermal instability properties of the powder present in the plant. Four testing methods can effectively determine the powder’s thermal instability hazards and allow evaluation of the self-heating hazards.
Ignition sources for dust fires and explosions can take many forms. When powders are heated, however, new subtle sources of ignition hazards are revealed: Those associated with the inherent thermal instability properties of the powder being heated or dried, and the nature of the drying process.
While additive manufacturing (AM) is a boon for specialized metal aerospace components, medical devices and custom implants, mass production of automotive components using 3D printing, or AM, may still seem a way off. Yet there are areas where the auto industry is already leveraging 3D-printing technology in its design and manufacturing strategies.
This article will review those areas and the role of metal powders and industrial gases in several AM processes that involve laser metal fusion and laser metal deposition. It will also discuss how industrial gas technologies are helping to address the challenges ahead.