This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Improvements in heat exchanger, evaporation and zero-liquid discharge technologies work together to boost the efficiency of heat recovery in waste management.
The process-efficiency benefits of utilizing heat from one part of an industrial process in another are well understood. Heat reuse — sometimes referred to as regeneration — is widespread across a range of processes: pasteurization and sterilization, evaporation, drying, distillation, pressurization, cooking, space and media heating, and reactor heating, to name a few. In fact, the list of applications is as varied as the industries themselves.
Does it make sense to add secondary heat recovery systems to your thermal process to capture and repurpose the BTUs you have created before they escape out the top of the stack? An economic analysis can help you determine whether it is justified at your plant.
Secondary heat recovery systems capture excess energy in the exhaust stream of processes or oxidizers. On the surface, heat recovery makes good sense: Capture the waste energy and repurpose it rather than throwing it out an exhaust stack. The concept sounds relatively straightforward. As with most things, however, the proof lies in the details.