Understanding the key elements of biofuel combustion is an important step toward insightful selection of next-generation alternative fuels. And that’s exactly what researchers at Sandia and Lawrence Livermore national laboratories are doing.

The journalAngewandte Chemiedevoted its May 10 cover to a paper, co-authored by Sandia’s Nils Hansen and Lawrence Livermore’s Charles Westbrook, that examines the essential elements of biofuel combustion. The paper, “Biofuel combustion chemistry: from ethanol to biodiesel,” examines the combustion chemistry of compounds that constitute typical biofuels, including alcohols, ethers and esters.

Biofuels such as ethanol, biobutanol and biodiesel are of increasing interest as alternatives to petroleum-based transportation fuels. According to Hansen and Westbrook, however, little research has been done on the diverse and complex chemical reaction networks of biofuel combustion. While much discussion surrounding biofuels has emphasized the process to make these alternative fuels and fuel additives, Hansen and Westbrook are the first to examine the characteristic aspects of the chemical pathways in the combustion of potential biofuels, say the Livermore, Calif.-based researchers.

In collaboration with an international research team representing Germany, China and the United States, Westbrook, Hansen and former Sandia post-doctoral student Tina Kasper used a combination of laser spectroscopy, mass spectrometry and flame chemistry modeling to explore the decomposition and oxidation mechanisms of certain biofuels, and the formation of harmful or toxic emissions. Hansen’s experiments were conducted in part at the Chemical Dynamics Beamline of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Their study was funded in part by the Department of Energy’s Office of Science.

Angewandte Chemie is the weekly, peer-reviewed scientific journal of the German Chemical Society.